Ahogy majdnem minden honlappal rendelkező cég, a Műszerház is sütiket használ a weboldalán!

További információk

Menü

A gyújtás primer áramköre

A gyújtás primer áramköre

A gyújtás primer áramkörében kezdődik a benzinmotorok gyújtási folyamata, mivel a primer áramkör adja az alapot a szekunder áramkör nagyfeszültségű szikrájához.

A primer áramkör komoly fejlődésen ment keresztül a korábbi mechanikus - kondenzátoros rendszertől a mai motoroknál használt elosztó nélküli, hengerenkénti tekercses gyújtásig. Ezen rendszerek működésének alapja a mágneses indukció jelensége.

A primer tekercs körül mágneses mező jön létre a benne folyó áram hatására azáltal, hogy a megszakító vagy az erősítőzárja a primer áramkört. Ilyenkor a mágneses erőtér teljesen telítetté válik. A gyújtás meghatározott pillanatában a primer tekercs testelése megszakad, és a mágneses mező hirtelen megszűnik a tekercs 250-350 menete körül, ami 200-350 V feszültséget indukál a tekercsben.

Az indukált feszültség nagyságát a következő tényezők határozzák meg:

a primer tekercs menetszáma
a mágneses mező erőssége
a mező megszűnésének sebessége, ami az áramkör bontásának gyorsaságától függ


A primer tekercs menetszámát a gyártó határozza meg, így a mágneses mező erősségét érdemes mérni, ami egyenesen arányos a primer tekercsben folyó árammal, valamint a mért görbéről leolvasható az áramkör bontásának sebessége is.

   
1. ábra
Az 1. ábrán látható primer áramköri áramerősség hirtelen elkezd emelkedni 6 A-ig, majd ez az érték marad egészen az áramkör bontásáig. A megszakítási sebesség leolvasható a görbe függőlegesbe hajlásáról. Bármilyen késedelem vagy lassú megszakítás lejtős görbeként jelenne meg, ami alacsony gyújtófeszültséget eredményez, míg az áramkör megfelelő bontása függőleges görbét mutat.

A következő ábra (2.) az indukált feszültség görbéjét mutatja, amely ebben az esetben 326 V-nál éri el a maximumát. Ez a feszültség a primer tekercs körül hirtelen összeomló mágneses erőtérnek a következménye. A mérés elvégzése azért fontos, mert az alacsony primer feszültség nem hoz létre megfelelő gyújtószikrát.


2. ábra
A zárásszög

A zárásszög hagyományos mechanikus gyújtás esetén azt az elfordulást jelenti, ameddig az elosztófej zárt kapcsolatban tartja a kalapácsot és az üllőt. Négyhengeres motornál ez általában 45 fok, ami a fele az egy hengerre jutó osztófej elfordulásnak.


3. ábra
A mechanikus gyújtás egyik hátrányos tulajdonsága, hogy a fordulatszám emelésével nem marad elég idő a tekercs körüli mágneses mező teljes létrejöttére. A 3. ábrán a fordulatszám 1000 fordulat/perc, az megszakító 16,3 ms-ra van zárva. A mért primer feszültség 286,3 V. Ahogy a motor sebessége 3000 fordulat/percre növekszik (4. ábra), a megszakító fordítottan arányosan rövidebb ideig van zárva, így a tekercs körüli mágneses mező nem tud tökéletesen felépülni. Ebben az esetben a primer tekercs 5,6 ms-ig van áram alatt, az indukált feszültség 275,4 V, ami a szekunder tekercsben létrejövő feszültséget is arányosan csökkenti.

   
4. ábra
Elektronikusan vezérelt gyújtású motornál a zárásidőt egy a primer áramot vezérlő áramkör szabályozza, ami az erősítőbevagy az elektronikus vezérlő modulba (ECM) van beépítve. A motor felpörgésével a zárásidő arányosan  megnövekszik, így a fordulatszámtól függetlenül mindig ugyanannyi ideig van áram alatt a primer tekercs. Az ilyen rendszert Variable DwellSystem-nek vagy Constant Energy System-nek nevezik.

Az "állandó energia" kifejezés a tekercsben fordulatszámtól függetlenül közel azonos indukált feszültségre utal, ami kiküszöböli a mechanikus gyújtás egyik fő hiányosságát, a változó zárásidőt. A tekercs feltöltési ideje az 5. ábrán látható, a fordulatszámtól függetlenül 3ms. Ez jóval rövidebb, mint a mechanikus rendszereknél akár magas fordulatszámon, de a megnövelt feszültség és a tekercs kisebb ellenállása miatt így is erősebb áram halad át a tekercsen, erősebb mágneses teret kialakítva maga körül.


5. ábra
Mint minden áramkörnél, a primer tekercs és testelése esetében is az átvizsgálást végző technikusnak meg kell győződnie annak sértetlenségéről, megfelelő vezetőképességéről. Ehhez nem elegendő egy egyszerű multiméter, hiszen az megtört, elfeslett vezetékek esetén is közel 0Ω ellenállást mér, nagyobb áramot adott esetben mégsem tud a vezeték továbbítani. Ez a példa is mutatja, hogy minden kapcsoló áramkört szükséges oszcilloszkóppal is megvizsgálni. Ideális testelés esetén egy egyenes vonalat látnánk, de gyakorlatban a feszültség ingadozhat 0,3V-ot. Egy áramkör negatív oldalán megengedhető akár 0,5V veszteség is, de a test oldalon a veszteségnek 0,25V alatt kell maradnia, így mindenképp a testelés ellenállásának minimalizálására kell törekedni.


6. ábra
A 6. ábra a primer áramkör testelésének feszültségveszteségét mutatja.  Látható, hogy zárt áramkörnél a feszültségveszteség folyamatosan emelkedik növekvő áramerősség mellett, egészen az áramkör megszakításáig. Elöregedett, rossz állapotú testelés esetén a feszültségveszteség-görbén az emelkedő szakaszok meredekebbé válnak, ami a vezeték átvizsgálásának, cseréjének a szükségességét mutatja.

A cikkben bemutatott mérések PICO GÉPJÁRMŰ-MOTORDIAGNOSZTIKAI KÉSZLET-tel készültek.

 

Eredeti publikáció: The Institute of the Motor Industry, Nagy-Britannia